首页> 外文OA文献 >Micro- and Nanomechanical Analysis of Articular Cartilage by Indentation-Type Atomic Force Microscopy: Validation with a Gel-Microfiber Composite
【2h】

Micro- and Nanomechanical Analysis of Articular Cartilage by Indentation-Type Atomic Force Microscopy: Validation with a Gel-Microfiber Composite

机译:压痕型原子力显微镜对关节软骨的微观和纳米力学分析:凝胶-微纤维复合材料的验证

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

As documented previously, articular cartilage exhibits a scale-dependent dynamic stiffness when probed by indentation-type atomic force microscopy (IT-AFM). In this study, a micrometer-size spherical tip revealed an unimodal stiffness distribution (which we refer to as microstiffness), whereas probing articular cartilage with a nanometer-size pyramidal tip resulted in a bimodal nanostiffness distribution. We concluded that indentation of the cartilage's soft proteoglycan (PG) gel gave rise to the lower nanostiffness peak, whereas deformation of its collagen fibrils yielded the higher nanostiffness peak. To test our hypothesis, we produced a gel-microfiber composite consisting of a chondroitin sulfate-containing agarose gel and a fibrillar poly(ethylene glycol)-terephthalate/poly(butylene)-terephthalate block copolymer. In striking analogy to articular cartilage, the microstiffness distribution of the synthetic composite was unimodal, whereas its nanostiffness exhibited a bimodal distribution. Also, similar to the case with cartilage, addition of the negatively charged chondroitin sulfate rendered the gel-microfiber composite's water content responsive to salt. When the ionic strength of the surrounding buffer solution increased from 0.15 to 2 M NaCl, the cartilage's microstiffness increased by 21%, whereas that of the synthetic biomaterial went up by 31%. When the nanostiffness was measured after the ionic strength was raised by the same amount, the cartilage's lower peak increased by 28%, whereas that of the synthetic biomaterial went up by 34%. Of interest, the higher peak values remained unchanged for both materials. Taken together, these results demonstrate that the nanoscale lower peak is a measure of the soft PG gel, and the nanoscale higher peak measures collagen fibril stiffness. In contrast, the micrometer-scale measurements fail to resolve separate stiffness values for the PG and collagen fibril moieties. Therefore, we propose to use nanostiffness as a new biomarker to analyze structure-function relationships in normal, diseased, and engineered cartilage.
机译:如前所述,当通过压痕型原子力显微镜(IT-AFM)进行探测时,关节软骨表现出与比例有关的动态刚度。在这项研究中,微米级球形尖端显示出单峰刚度分布(我们称为微刚度),而用纳米级锥体尖端探测关节软骨则产生了双峰纳米刚度分布。我们得出的结论是,软骨的软蛋白聚糖(PG)凝胶的压痕产生了较低的纳米刚度峰,而其胶原纤维的变形产生了较高的纳米刚度峰。为了检验我们的假设,我们生产了一种凝胶-微纤维复合材料,该复合材料由含硫酸软骨素的琼脂糖凝胶和原纤维状聚(乙二醇)-对苯二甲酸酯/聚(丁烯)-对苯二甲酸酯嵌段共聚物组成。类似于关节软骨,合成复合材料的微刚度分布是单峰的,而其纳米刚度则表现出双峰的分布。而且,类似于软骨的情况,添加带负电荷的硫酸软骨素使凝胶-微纤维复合材料的水含量对盐有反应。当周围缓冲溶液的离子强度从0.15增加到2 M NaCl时,软骨的微刚度增加了21%,而合成生物材料的微刚度增加了31%。在将离子强度提高相同量后测量纳米刚度时,软骨的下峰增加了28%,而合成生物材料的下峰增加了34%。有趣的是,两种材料的较高峰值均保持不变。总而言之,这些结果表明,纳米级的较低峰是软PG凝胶的量度,而纳米级的较高峰是胶原原纤维的硬度。相反,千分尺测量无法解析PG和胶原原纤维部分的单独硬度值。因此,我们建议使用纳米刚度作为一种新的生物标记来分析正常,患病和工程软骨中的结构-功能关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号